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Problems of laminar body synthesis are one of the promising directions in the area of 
structural optimization. A number of papers [i-7] concerning questions of designing laminar 
heat-shield panels, multilayered wave filters, elastic laminar bodies, is devoted to them. 
The structure of the construction and its geometric dimensions are selected as control param- 
eters in problems of laminar construction synthesis. The control characterizing the struc- 
ture of laminar bodies is a piecewise-constant function with a discrete range of values. 
Consequently, methods of optimal control theory, the maximum principle, finite control vari- 
ations in sets of small Lebesgue measure, must be used in deriving the control equations 
and the construction of numerical algorithms to solve the synthesis problems. The structure 
and dimensions of a laminar construction are determined completely during optimization al- 
though the quantity of layers in the construction, their layer dimensions and materials are 
unknown in advance. 

The problem of synthesis of a finite set of elastic homogeneous isotropic materials 
of a multilayered spherical minimum-weight shell in a stationary temperature field and loaded 
by internal and external hydrostatic pressure for given constraints on the strength of the 
sphere, its dimensions, and the critical buckling load is examined in this paper. Necessary 
conditions are obtained for optimality, a computational algorithm is constructed, and an 
example is presented of the computation of an optimal spherical shell. 

i. FORMULATION OF THE PROBLEM 

Let there be a set W consisting of m homogeneous isotropic materials. A laminar spheri- 
cal minimum-weight shell is to be synthesized from it. 

Let r I and r 2 be the inner and outer surface radii of the shell under consideration. 
For definiteness, we consider the temperature T l and the pressure Pl known on the boundary 
r~ while we glve the heat transfer according to a Newton law and the pressure P2 on the outer 
boundary r 2. The stress-strain state of a multilayered sphere under the assumption that 
the case of spherical symmetry holds is described by the boundary-value problem including 
the equilibrium equation 

d~/dr -i- 2 ( ~ . -  %)/r = O; (i. i) 

the stationary heat-conduction equation 

the thermoelasticity relationships 

[(t ." ~'~ " ~,] ~" = (f ~- ~.) (l "v) - -  v)  -TF + 2~, - -  - -  c~ ( t  + v) 

% = (t  + ~,) (l - -  2v) + ~' 7 7 -  

( 1 . 3  

and the boundary conditions 

(y,(r~) = - - P l ,  err(r2) - -  - - P 2 ;  ( 1 . 4  

d~" ( ~ )  
T ( r l )  ~-= T I, ~.(r,)) dr -~ k[T:~  - -  T(1"2)],: ( 1 . 5 j  
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where  u(r) '~  d~ (P) i  o,~(~);  and T(~) @f~, 9 e s p e c t i v ~ t y ,  thee ~ d ~ a i  d l s p l X c d n ~ s  ~f  body p o i n t s ,  
the radial and circumferential g g ~ S g  components, ~nd t~e Stationary temperatut~ field act- 
ing in the construction; E(r), v(~), a(r~, and X(r) are t~e distribute~ cNaracteristics of 
the medit~, the u modUius, the Po~Sson ratio, th~ thermal expansion and heat conduction 
of the layer mat4fiaiS; T~ is the temperature of the external mediu~; and k is the heat-trans 
fer coefficient. 

On the internal bodndarieS r i e (r~, r 2) of the layer~ wh~re tNe properties of the 
medium undergo a diScontinUity, the cOnnectiOn conditions N~st be given: th~ continuity 
of the displacement U(r~, the radial stress Or(r) , the ~em~@9~tSre T(r), and the heat flux 
%(r)dT/dr, i.e., 

[u (rd] = [a~ (rO] = [ r  (ri)i = [% (r~) 
dr ("0 ] 

~ j  - -  - -  O; (1 .6)  

Let  a,  L, 0 , ,  fi , ,  and X, be  t h e  c h a r a c t e r i s t i c  q u a n t i t i e s  w i th  d imef iS iOna i i t y  of  t h e  
s t r e s s ,  l e n g t h ,  d e n s i t y ,  t e m p e r a t u r e ,  and h e a t - c o f i d f i c t i o n  c o e f f i c i e n t .  Le t  us  i n t r o d u c e  
new d i m e n s i o f i i e s s  v a r i a b l e s  ( t ~ e  a s t e r i s k  6fi t h e  d i m e n S i o n l e s s  q u a n t i t i e s  i s  l a t e r  o m i t t e d ) :  

u ~ - u / L ,  r * = r / L ,  r i .=r~ lL ,  lh =P~/(r, i - -  1,2; 

a~ = ar/a. ~ = ad~. E* = E / a ;  T* = T,,'t,, 

~*: = ~t.~, }~* : k/~,, p'* : :  p/p.~, 1~:* ~ kL/;% 

(1.7) 

(o s and p are the strength and density limits of the ~aterials from the set W). Let us make 
the change of Coordinates 

r =  r I -!-x(r  2 - r ~ ) ,  x ~  [0, II,  ( 1 . 8 )  

transferring the variable domain of assignment [rii r2] into the c6nstant [0, i]. Let us 
introduce the pieCewise-constant function 

O(x) = {0i; X ~ [xj, xj+l), ] = i . . . . .  hi,  xl = O, x,~§ = t, ( 1 . 9 )  

characterizing the structure Of the ~uitiiayered Constrfiction: th~ quahtity, dimensions, 
and materials of the layers Comprising it. The Values of 8j belong to a discrete finite 
set 

U = (0~ ..., O,j~ ( 1 . i 0 )  

corresponding to the given Set of materials W. Now9 all the characteristics of the materials 
from the set W Will be diStribUtion f~ncs of 8(X) in s segment [0~ i]. It is conveni- 
ent to give the set of integers U ~ {I, ..., m} as the set U. Then writing ~(x) = m, x e 
[Xk, Xk+ I) means that the k-th iay~r of the spher~ cb~gists of the m-th material of the set 
W. 

Since the structure Of the laminar Spherical sh~il is determined by the function 8(x) 
and the geometry by its dimensions r i and r2~ we consider the pair {8(x), rl} as the control 
(for definiteness We consider th~ ~ks radlUs r 2 fi~ed)~ Wher~ B(x) e U (i.i0) and 

r ~  [a, ~l (1.11) 
(a, b are given limits within which the thickness of the constructlon under consideration 
can vary). 

The optimal design problem is the following, A~ong thepieceWise-constaht functions 
8(x) (1.9), whose range of values belohgS to the set U (1.iO) and the parameters r~ from 
the segment [a, b] (i.ii), find the c6~trOi {@(x)~ tl}, achieving the Minimum of the weight 
functional 

r2 1 �9 

F[O, r J  = Sp(O)r~d r = j ' + ( x ,  o, r~)dx 
r I 0 

(1.12) 
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for given constraints on the strength 

and the critical bucklingload 

9(x, u, o~, T, 0, rl) <~0 (i.13) 

P' -- Pl -- q(0, I'i) < 0. 

We consider the Mises plasticity condition as the constraint (1.13) 

(i.14) 

i r u, a~, T, O, r i ) =  [ a ~ - - u , ~ l - - u s =  

t-2vl_v ( Y r l - - a s ~ O '  

and the quantity q ( 0 ,  r i) (1.14) as the load 
2sEth 2 

q(o, n )=  R~ V3(~-~) '  (1.15) 

which is formally the product of the external critical pressure for a homogeneous isotropic 
spherical shell by a certain factor s < i. Here h = r 2 - r i is the shell thickness, R = 
i/2(r i + r 2) the radius of its missile surface, and E c and Vc the elastic moduli of the 
shell material. 

To use expression (1.15) under constraint (1.14) for a multilayered shell the elastic 
moduli of a packet averaged with respect to the thickness [8] 

vc = B.,/B t, Er = (B 1 - -  vr ( 1 . 1 6 )  

1 

are considered as E c and Vc, where B 1 - - f  E(0) 
i -- v z (O) 

0 

] 

= f ~ (0) ~ (O) @2 - -  r~) dz. - - ( , . ~ - - , . , ) d x ;  B~ J i - -J (o)  
0 

Taking account of (1.15) and (1.16), the constraint (1.14) can now be represented in 
t h e  f o r m  

] 

F., [0, rd  = p,,_ - -  p~ - -  S Q(O, rl) dx <~ 0 
0 

,2sh2E (0) [t -- vcv (0)1 (1.17) 

2. NECESSARY OPTIMALITY CONDITIONS 

To derive them in the problem (1.1)-(1.17), an expression must be constructed for vari- 
ations of the target functional (1.12) and the constraints (1.13) and (1.17) in terms of 
variations of the control {8(x), ri}. To this end we transform the boundary-value problem 
(1.1)-(1.6). We first integrate (1.2). We have (the prime denotes the derivatives with 
respect to the coordinate x) 

r2~(x)T'(x) = c(r~ -- h ) ,  ( 2 . 1 )  

where the variable r is associated with x by the relationships (1.8). Using the condition 
(1.6) for continuity of the heat flux over the construction layers, we obtain that the con- 
stant of integration c will be identical over the whole segment [0, i]. Now, making the 
substitution 

T(x) = cTo(x)-i- T1, ( 2 . 2 )  

we obtain a Cauchy problem to determine the function T0(x) from the relationships (1.5), 
(2.1), and (2.2) 

, , r . : - h  T o ( 0 ) = 0 .  T o (x~ -- r~ ~ (-~) , (2.3) 
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As a solution of the Cauchy problem (~.3), the function T~(~) is here continuous i~ the seg- 
ment [0, i]; therefore, the temperature function T(x) (2.2) is glso continuous. The constant 
c is determined from the second condition (1.5) and the t~lati~Nships (2.1) and (R.2) 

c = k r ~ ( T ~ ,  r t) /[kr~f  o(i) + i l. ( 2 . 4 )  

For convenience we denote the value of the function T0(1) by y. As follows from (2.3), the 
value of the parameter X depends on the selection of the Control {0(x), rl}. 

The form of Eqs. (i.i), (1.3), (2.3) and the connection condition (i.6) permit introduc- 
tion of phase variables continuous in the segment [0, i] 

Z(x) = (u(x), ~(x), To(x))'. ( 2 , 5 )  

Now t h e  o r i g i n a l  boundary  v a l u e  p rob lem ( 1 . 1 ) ,  ( 1 . 3 ) ,  ( 1 . 4 ) ,  ( 2 . 2 ) - ( 2 . 4 )  can be r e p r e s e n t e d  
in the form of a boundary-value problem in the unknowns Z(x~ (2,5) 

Z'(x) = A(x, 7, 8, ra).Z(x) i-B(x, 8, q),  12(0)= --p, ,  Z=(I)= --p~, zn(0)= 0, ( 2 . 6 )  

where the nonzero elements alj and b i of the matrix A(x, X, 0, r I) and the vector B(x, e, 
r~) are expressed as 

2 v ( r  2 - r l )  ( t ~ - v )  ( t - - 2 v ) ( r  2 -  r l )  c~c(l -~ % ' ) ( r  - -  r l )  
a l l =  r(~'--]) ' a t , :  E ( | - - v )  ' a x e :  l - - v  ' 

2E ( r .  - -  r l )  (2 - -  4v) ( r ~  - -  r i )  2 ~ z E c  (r  2 - -  r i )  

a~t r ~ ( t - v )  ' a ~ =  r (v - - t )  ' a2a r (v - - l )  ' 

. . . . . . .  "-, r 2 - -  r 1 t ~- V 2c~ET t ( r  - -  r l )  b~ .~ 
bl=aTl(r"-  --rJ)i"-~-~' b2= r ( v = i )  ' ,.-~, 

We replace the local constraint (1.13) by an equivalent integral constraint 

7'2 ] 

/q [Z,  ~, 0, r~] = '-2-, { ~ ( ' " )  + I~P(. . . ) l}r  ~ch" == ~qh(x ,  Z, ?, O, r~)dx = O. ( 2 . 7 )  
r l  0 

Le t  us r io te  t h a t  t h e  f u n c t i o n a l  ( 2 . 7 )  has  a F r e c h e t  d e r i v a t i v e  [9] s i n c e  t h e  i n t e g r a n d  
I ~~ " )1 ,  which i s  t h e  a b s o i t l t e  v a l u e  o f  t h e  Mises  p l a s t i c i t y  c o n d i t i o n ,  can v a n i s h  in  a 
l a m i n a r  s p h e r e  o n l y  in  a s e t  o f  z e r o  measure  c o n s i s t i n g  o f  a f i n i t e  number o f  p o i n t s .  

Now, l e t  t h e  p a i r  {%(x) ,  rz}  be t h e  o p t i m a l  c o n t r o l  f rom t h e  a l i o w a b l e  s e t  ( 1 . 1 0 )  and 
( 1 . 1 1 )  m i n i m i z i n g  t h e  f u n c t i o n a l  ( 1 . 1 2 )  and s a t i s f y i n g  t h e  c o t ~ s t r a i n t s  ( 1 , 1 7 )  and ( 2 . 7 ) .  
Le t  us c o n s i d e r  t h e  p e r t u r b e d  c o n t r o l  {O*(k) ,  r i + ~r~.} [9] 

0* (x) Jg Ix)' x ~ D, g (x) ~ U, 
: [0(x), x ~ D ,  r l ~ - 6 r ~ [ a ~  hi, 16rl t < e  ( 2 . 8 )  

(D c [0 ,  1] i s  a s e t  o f  s m a l l  m e a s u r e  mes(D)  < z;  z > 0 i s  a s m a l l  q u a n t i t y ) .  Using t h e  
s t a n d a r d  t e c h n i q u e  [ 9 ] ,  t h e  p r i n c i p a l  p a r t s  o f  t h e  i n c r e m e n t s  Of t h e  f u n c t i o n a l s  ( 1 . 1 2 ) ,  
(i.17), and (2.7) can be obtained [for brevity the arguments of the functions referring to 
the unperturbed control {8(x), rl} are omitted 

Here 

D 

6F~ [ . . . ]  = S {M(0* . . . .  ) - -  M(O . . . .  )}dX-l- G,Ort, 
D 

6F~ [ . . .  ] = -- y {Q (8", r 0 -- Q (8, r0} dx -- G.z6r ,. 
D 

( 2 . 9 )  

M(x, Z, V,  ~,, 0, rx) = q)x(x, Z, V, 0, rl) + W'(x). [A(x, V, 0, r l ) . Z ( x  ) ~ -  B ( x ,  0, rl)]; 
1 1 

o o 
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G~ -~ -~ ~-~-Q (O, rl) dX; 
o 

and the vector of the conjugate variables ~(x) satisfies the boundary-value problem 
.,<, 

W ' ( x ) = - - A  ~ ( x , ? , 0 , r j . W ( x ) -  ~qb 1(x, z, ?, 0, rj , 

1 

,1(0)  = ~1(i) = O, g'a(1) = .$-~-M(x, Z, W, 7, O, rJdz. 
o 

(2.1o) 

Let us now compile the expanded functional 

J [O , r  d = F [ O , r j  + ~ f l [ Z , v , O ,  r j + 2 1 { F ~ [ O ,  r d + ~ ]  + ( 2 . 1 1 )  

(~i' ~i 2 are Lagrange multipliers and penalty variables [i0]). The variation of the func- 
tional J[%, rz] (2.11) can be represented by using (2.9) in the form 

8 s [ . . . 1  = ~ ( s ( 0  . . . .  ) -  ~ ( 0 .  . . . .  )}dx + 
D 

3 
+ {G + ;k4a ~ - -  s -~- ;~a --  X2} 5r~ -{- 2 ~ L~6~ ,  

i = l  

( 2 . 1 2 )  

where 

H(x, Z, ~ ,  ?, 0, ra) = - -~(x ,  8, r~) --  Z4M(x, Z, W. ?, 0, r l )<-  Z1Q(0, r j .  ( 2 . 1 3 )  

S i n c e  t h e  c o n t r o l  { 0 ( x ) ,  rz}  i s  o p t i m a l  ( m i n i m i z i n g ) ,  f o r  any a l l o w a b l e  c o n t r o l s  { 8 * ( x ) ,  
r 1 + 6 r l }  t h e  c o n d i t i o n  6 J [ . . . ]  ~ 0 s h o u l d  be s a t i s f i e d .  Then,  by v i r t u e  o f  t h e  a r b i t r a r i n e s s  
o f  t h e  v a r i a t i o n s  8r 1 and 6 g i ,  we o b t a i n  from ( 2 . 1 2 )  t h e  r e l a t i o n s h i p s  [10] 

G -~ L4G ~ --  ~162 -- ~2 <- ~a = 0; ( 2 . 1 4 )  

Z1F2[O,  r l ]  - -  (), ~1 ~ O; ( 2 . 1 5 )  

Z~(a --  q)  = 0, ~a(r~ --  b) -- 0, ~2 ~ 0, ~s ~ 0 ( 2 . 1 6 )  

and b e c a u s e  t h e  s e t  o f  s m a l l  measure  D can be c o m p a c t l y  a r r a n g e d  in  t h e  segment  [0 ,  1] a l -  
most  e v e r y w h e r e ,  t h e  maximum c o n d i t i o n  f o r  t h e  H a m i l t o n i a n  f u n c t i o n  H ( . . . )  ( 2 . 1 3 )  in  t h e  
a rgument  0 [9] s h o u l d  be s a t i s f i e d  f o r  a l m o s t  a l l  x ~  [0,  1] 

H (x, Z , W , ? , 0 ,  r l ) - m a x  H(x,  Z, W,?,O*,rO. ( 2 . 1 7 )  
O*~U 

Therefore, we obtain that the optimal control {8(x), rl} and its corresponding optimal tra- 
jectory W(x) and the conjugate variable vector Z(x) should satisfy the boundary-value prob- 
lems (2.6), (2.10), the relationships and constraints (1.9)-(1.11), (1.17), (2.7), (2.15), 
(2.16) and the optimality conditions (2.14) and (2.17). 

3. COMPUTATIONAL ALGORITHM 

The main idea of the direct method of solving the optimal design problem is the con- 
struction of a sequence of controls {8(x), rl}j, j = i, 2 .... , that minimizes the target 
functional (1.12). To do this by introducing a uniform mesh {xi} we partition the segment 
[0, i] into n segments D i simulating a set of small measure. We give the initial control 
{8(x), rl} from the allowable domain (1.9)-(1.11). The function 8(x) is evidently piece- 
wise-constant with the constancy sections D i = [xi, xi+ I) on which it takes on values from 
the set U (I.i0). The next approximation {8*(x), r I + 6ri} is given in a certain set D i 
in the form (2.8) 

O*(x)=  tOh' x ~ D ~ ,  O k ~ U ,  
[o (x), x ~D~; (~. l )  

rl @ 5 r , ~  [a, hi, 15rl [ < s  ( 3 . 2 )  

317 



and is determined from the linearized optimization problem: Find that allo~ahle pers 
{@k, ~r~} in the set D i that will assure a maximal decrease in the functional F[...] I (1.12) 
(or, equivalently, the minimum of the variation 6F[...] (2.9)) under conditions (3.1} and 
(3.2) and the linearized constraints (1.17) and (2.7) 

Fl[Z -~- 6Z, y @ 6y, 0", "l -) 5rl1 ~ Fl[Z, y, O, r~] + 
6F~[Z, ~,, 0, rx] = 0; 

(3.3) 

F 2[0., r l + 6 r  l] ~ F  2[0, r l] +6F~[0 ,  rl]<-~0, ( 3 . 4 )  

where t h e  e x p r e s s i o n s  f o r  6 F l [ . . . ]  and 6 F 2 [ . ; . ]  a r e  g i v e n  by ( 2 . 9 ) .  This  l i n e a r i z e d  p rob lem 
i s  a m o d i f i c a t i o n  of  t h e  p rob lem examined in  S e c s .  1 and 2. We hence  o b t a i n  d i r e c t l y  t h a t  
t he  o p t i m a l  p e r t u r b a t i o n  {Ok, 6rz} s h o u l d  s a t i s f y  t h e  r e l a t i o n s h i p s  

6rl = --T{G + ~ a l  --  ~a~ --  k, + ~3}, ~ ) 0; 

Xl{F.2[0, r l] + 6F,[0, rl] } = 0, l l  >I 0; 

E 2 ( a - - r ~ - - 6 r ~ )  = 0, E3("~+ 6 r ~ - -  b) = O, kz>10,  k s > 1 0  

and t h e  c o n s t r a i n t s  ( 3 . 2 ) - ( 3 . 4 ) .  

(3.5) 

(3.6) 

(3.7) 

The multipliers T, ~2, and ~3 are found from (3.2) and (3.7) during the numerical com- 
putation process. One of two modifications is realized for the determination of the best 
correction 0 k (3.1). 

A. G I ~ 0. We then obtain from (3.3) and (3.5) 

6r,= --{! [M(On . . . .  )-- J[(O . . . .  )]dx -',-Fl[Z , ~, O, rs]},,G1, 
i 

and t h e  c o r r e c t i o n  O k min imiz ing  t h e  v a r i a t i o n  6 F [ . . .  ] ( 2 . 9 )  i s  found  from t h e  c o n d i t i o n  

~ H  (x, Z, ~F, y, Ok, rO dx = max ~ (x, Z, ~ ,  ?, O j, rO H dx 
Di oj~U Di 

(H(x, Z, W, ?, 0 i, q)  = --  ~(x, O j, rl) -!- GM(x, Z, "I, ?, O~, q)/G~). 

Here (3.4) should be satisfied as well as the constraints (3.2) and (3.7). 

B. G I = 0. Assuming the exact equality (3.4) is satisfied, we find from relationships 
(3.4) and (3.5) (G 2 ~ 0 in the problem under consideration) 

6r~ = --  {!i[Q(O~, r~)--Q(O, r~)]dx-- F2[O, r~]}/G2. 

Here the multiplier is 

~ l = {  F 2 [ 0 ' r l ] - S D i [ Q ( 0 h ' r l ) - Q ( o ' r l ) ] d x } / ( T G ~ ) +  (G--~.2-t-la)/G.,. 

.According to condition (3.6), Xl e 0. If i I e 0, then the correction 8 k is determined from 
the expression 

j" H (x, Oj~, r 0 dx = max ~ H (x, 0~, rl) dx 
Di 8jEU D~ 

(H(x, 01, q) -=  --(l)(x, 0~, q)  + GQ(O~, r~)/V.2) 

with the constraints (3.2), (3.7) and FI[Z + 6Z, u + 6~, ~*, r I + 6r I] = 0 (3.3) taken into 
account. If X i < 0, then the assumption about compliance with the exact equality (3.4) is 
not true. Then the constraint (3.4) is not taken into account and the correction {8 k, 6r i} 
is determined from the relations 
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with the constraints (3.2), (3.3), and (3.7) taken into account. 

By constructing the new control {O*(x), r I + 6ri} in this manner we take it as the ini- 
tial control and construct the next approximation. The process is considered terminated 
and this mesh of partitions {xi} if the control {O (x), rl} does not change in any of the 

sets D i . 

4. EXAMPLES 

The set W consists of five materials with the following mechanical and physical dimen- 
sionless characteristics (1.7): E = 270, 7100, 10,500, 21,000, and 11,200; v = 0.27, 0.3, 
0.3, 0.3, and 0.33; p = 0.65, 2.85, 4.4, 7.8, and 8.93; o s = 4.5, 40, 60, 120, and 20; 
~'i06 = i00, 21.94, 8.4, 15, and 16.7; I = 0.07, 155.4, 8.4, 45.4, and 389.6; k = 23.26. 
Given on the inner surface of the sphere whose radius r I can vary between the limits of the 
segment [0.7, 0.91] are Pl = 0 and T I = 0. On the outer sphere surface whose radius r 2 is 
considered fixed, equal to one, P2 = 6, and the heat transfer according to a Newton law with 
the temperature of the external medium T 2 = i00 are given. The coefficient is s = 0.I in 
(1.15). The sphere is covered inside and out by thin (0.002 thickness) nonvariable shield- 
ing layers of a third material. The inner variable domain of the sphere is partitioned 
into 48 equal parts simulating the set D i along the thickness. 

Taken as the initial approximation is a four-layer sphere with r I = 0.9, F = 0.2203, 
and with layers [0.9, 0.912] of the third material, [0.912, 0.972] of the second material, 
[0.972, 0.998] of the first material, and [0.998, I] of the third material. Obtained as 
a result of optimization is a fourteen-layered sphere (included among the layers are also 
the two nonvariable protective layers) with r I = 0.9015 and F, = 0.202 [the constraint 
F 2 = -0.9 (1.17)]. A slit of this sphere along the thickness is represented in Fig. i. 
Layers from the third material are shaded by hatching, from the second material by lines, 
and from the first material by dots. Graphs of the distribution of the radial stresses 
Or(r) , the temperature T(r), and the stress intensity function ~(r) (1.13) are presented 
in Figs. 2-4. A three-layered sphere with r I = 0.91 and F* = 0.2398 whose inner variable 
domain consists of the second material is the lightest "homogeneous" sphere satisfying the 
constraints on strength (1.13) and stability (1.14) for given Pl, P2 and Tl, T 2. The rela- 
tive gain in weight for an optimal sphere as compared with the given "homogeneous" sphere 
is (i - F,/F*)'I00% = 15.8%. 
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A CLASS OF INVERSE CREEP THEORY PROBLEMS 

I. Yu. Tsvelodub UDC 539.376 

Certain inverse problems associated with finding the external effects needed to obtain 
the requisite residual body or plate shape under creep conditions in a given time t, with 
elastic unloading are taken into account at the time t = t,. It is assumed here that the un- 
known external effects belong to a definite class, for instance relaxation problems were 
examined in [2, 4, 5] when unknown displacements of body surface points (unknown plate de- 
flections) remained fixed during the time t,, and external loads were considered constant 
in time in [i, 2], etc. 

A class of inverse problems about finding external loads such as would assure a given 
residual body (plate) shape at any running time is investigated in this paper. A theorem 
on ithe uniqueness of the solution is proved for the cases of small strains. A variational 
formulation i!s given for these problems on the basis of finding the stationary value of a 
ce~tainfunctional; the displacement and stress velocities are here varied simultaneously 
as both running and residual (after elastic unloading). The solution of the problem in an 
exact formulation is compared in a specific example with the solution obtained by using the 
mentioned mixed variational principle. 

i. Let us consider a uniformly heated body of volume v with surface S whose govern- 
ing strain equations we write as 

ehz = a ~ z ~ n o ~  + ekt ~ ( k , l  --  1 , 2 ,  3)~ ( 1 . 1 )  

where  r163 r163 c ,  aks  aks = amnks a r e  componen t s  o f  t h e  t o t a l  s t r a i n ,  c r e e p  s t r a i n ,  s t r e s s  
and e l a s t i c  p l i a b i l i t y  t e n s o r s ,  r e s p e c t i v e l y ,  summat ion  f rom 1-3  i s  p e r f o r m e d o v e r  r e p e a t e d  

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
2, pp. 163-173, March-April, 1989. Original article submitted July 12, 1988. 
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